Mapping frames with DNN-HMM recognizer for non-parallel voice conversion

نویسندگان

  • Minghui Dong
  • Chenyu Yang
  • Yanfeng Lu
  • Jochen Walter Ehnes
  • Dong-Yan Huang
  • Huaiping Ming
  • Rong Tong
  • Siu Wa Lee
  • Haizhou Li
چکیده

To convert one speaker’s voice to another’s, the mapping of the corresponding speech segments from source speaker to target speaker must be obtained first. In parallel voice conversion, normally dynamic time warping (DTW) method is used to align signals of source and target voices. However, for conversion between non-parallel speech data, the DTW based mapping method does not work. In this paper, we propose to use a DNN-HMM recognizer to recognize each frame for both source and target speech signals. The vector of pseudo likelihood is then used to represent the frame. Similarity between two frames is measured with the distance between the vectors. A clustering method is used to group both source and target frames. Frame mapping from source to target is then established based on the clustering result. The experiments show that the proposed method can generate similar conversion results compared to parallel voice conversion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

طراحی یک روش آموزش ناموازی جدید برای تبدیل گفتار با عملکردی بهتر از آموزش موازی

Introduction: The art of voice mimicking by computers, has with the computer have been one of the most challenging topics of speech processing in recent years. The system of voice conversion has two sides. In one side, the speaker is the source that his or her voice has been changed for mimicking the target speaker’s voice (which is on the other side). Two methods of p...

متن کامل

Semi-supervised training of a voice conversion mapping function using a joint-autoencoder

Recently, researchers have begun to investigate Deep Neural Network (DNN) architectures as mapping functions in voice conversion systems. In this study, we propose a novel StackedJoint-Autoencoder (SJAE) architecture, which aims to find a common encoding of parallel source and target features. The SJAE is initialized from a Stacked-Autoencoder (SAE) that has been trained on a large general-purp...

متن کامل

An IWAPU STD System for OOV Query Terms and Spoken Queries

We have been proposing a Spoken Term Detection (STD) method for Out-Of-Vocabulary (OOV) query terms integrating various subword recognition results using monophone, triphone, demiphone, one third phone, and Sub-phonetic segment (SPS) models[1][2]. In this paper, we describe two methods for text OOV query terms and spoken queries. For text OOV query terms, we introduce four unique methods. First...

متن کامل

Singing Voice Synthesis Based on Deep Neural Networks

Singing voice synthesis techniques have been proposed based on a hidden Markov model (HMM). In these approaches, the spectrum, excitation, and duration of singing voices are simultaneously modeled with context-dependent HMMs and waveforms are generated from the HMMs themselves. However, the quality of the synthesized singing voices still has not reached that of natural singing voices. Deep neur...

متن کامل

A KL Divergence and DNN-Based Approach to Voice Conversion without Parallel Training Sentences

We extend our recently proposed approach to cross-lingual TTS training to voice conversion, without using parallel training sentences. It employs Speaker Independent, Deep Neural Net (SIDNN) ASR to equalize the difference between source and target speakers and Kullback-Leibler Divergence (KLD) to convert spectral parameters probabilistically in the phonetic space via ASR senone posterior probab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015